Recorded Webinars



Name Products Type Action
61 results (page 1/4)
100% Signal Visibility during Emulation Dynamic Debug with HVD Technology   
Abstract: When it comes to debugging during emulation, engineers are forced to use multiple applications to ensure proper hardware signal data extraction and visualization. Learn from this webinar a leading edge technology that intelligently extracts data from the FPGA emulator to provide 100% signal visibility during emulation. This approach delivers up to 70% bandwidth savings in the critical emulator communication channel. Both dynamic and static probes from emulation can also be visualized in the Riviera-PRO waveform viewer preserving the original signal names and hierarchy paths and providing complete traceability to the design’s RTL source code. Play webinar   
HES-DVM Recorded Webinars
Accelerate DSP Design Development: Tailored Flows   
Learn how to achieve better Digital Signal Processing (DSP) design productivity using Aldec’s integrated design flows, enabled by a number of unique technologies, features, and industry partnerships available within Aldec Riviera-PRO™ design and verification platform. You will learn about the essential and innovative features in the RTL simulation environment that are important to signal processing: Model-based design flow integration, Floating-point aware RTL debugging tools, Dedicated protocol analysis tools, Full support for FPGA silicon vendors. Play webinar   
Active-HDL, Riviera-PRO Recorded Webinars
Accelerate SoC Simulation Time of Newer Generation FPGAs   
Functional verification of a design at the three design stages (RTL, Gate-Level and Post-Route) are essential steps to ensure correct behavior of a design according to requirements, however they are limited by HDL simulator speed. While HDL simulators offer advanced debugging capabilities and provide robust design coverage information, their speed is the primary bottleneck of the design cycle when it comes to verification. This webinar will discuss a faster, safer, and more thorough verification environment that combines the robustness of an HDL simulator with the speed of FPGA prototyping boards. Play webinar   
HES-DVM, HES-7 Recorded Webinars
Accelerating The Verification Of Hardware Dependent Software   
Software costs now dominate in SoC design. It is therefore imperative that the dependencies the hardware places on the software are captured and managed as early as possible. To ignore these is to risk project and budget overrun. In this webinar, we will illustrate why FPGAs are chosen as the verification platform for software integration. We will discuss the challenges of using FPGAs for verification and introduce the use of hybrid virtual prototypes. A comparison will be made between traditional FPGA ASIC prototypes and an FPGA-based emulation system. Play webinar   
HES-DVM, HES-7 Recorded Webinars
Aldec and SynthWorks: OS-VVM: Open Source - VHDL Verification Methodology   
Open Source - VHDL Verification Methodology (OS-VVM™) provides advanced verification capabilities to VHDL teams. Attendees will learn how to add functional coverage, constrained random test, and coverage driven random test to their current testbenches. OS-VVM has a straight-forward usage model that allows the addition of functional coverage, constrained random, and coverage driven random features to a testbench in part or in whole. This webinar demonstrates how the addition of Functional Coverage to testbenches is necessary - even with directed tests. Constrained Random or Coverage Driven randomization can be added when and where needed, and there is even the ability to mix directed, algorithmic, file-based, constrained random, and coverage driven random methods. OS-VVM is open source package based. It compiles under VHDL-2008 or VHDL-2002 (with minor adaptations, and has been produced as a joint effort between Aldec and SynthWorks, both companies committed to provide continued support to VHDL design community. Play webinar   
Active-HDL, Riviera-PRO Recorded Webinars
ARM Cortex SoC Prototyping Platform for Industrial Applications   
Modern industrial systems are faced with many key design challenges including: system complexity, real-time performance requirements, evolving standards, and rising costs. ASIC prototyping platforms allow designers to implement and verify functionality of industrial systems at-speed prior to silicon tape-out, saving money from costly re-spins. In this webinar, we demonstrate how to tackle industrial design applications with Aldec’s HES-7™, which supports ARM® Cortex™-A9 based designs by leveraging Xilinx® Zynq® All Programmable SoC. Play webinar   
HES-7 Recorded Webinars
ASIC/SoC Prototyping with Aldec’s new HES-7 Board   
Aldec's newly released FPGA-based prototyping platform, HES-7™, leverages Xilinx® Virtex®-7 FPGA. Xilinx has introduced a new Stacked Silicon Interconnect technology (SSI), enabling a single Virtex-7 to have 2M logic cells, making it the industry’s largest capacity FPGA. This webinar will provide an overview of modifications to previous Xilinx architecture and the structuring of SSI technology. The webinar will also present how the Virtex-7 benefits FPGA-based prototyping platforms, and will also provide an overview of HES-7 key features. Play webinar   
HES-7 Recorded Webinars
Assertions - A Practical Introduction for HDL Designers   
The majority of FPGA designers who are proficient in traditional HDLs might have heard about assertions, but haven’t had time to try them out. Designers should be aware that assertions are quickly becoming standard part of both design and verification process, so learning how to use them is a future necessity. This webinar provides quick and easy introduction to the basic ideas and applications of assertions: sequences, properties, assert and cover commands, etc. Practical examples are used both during presentation and live demonstration in the simulator. Play webinar   
Active-HDL, Riviera-PRO Recorded Webinars
Best Design Practices for High-Capacity FPGA Devices   
With the latest FPGA technology advancements and release of high capacity devices such as Xilinx® Virtex®-7 and Altera® Stratix®-V, design teams face more challenges producing safe and clean HDL (RTL, FPGA) code. In this presentation, we will focus on the design techniques that will result in the code running most optimally on the large FPGA designs, and be free of timing and synchronization issues. Play webinar   
ALINT Recorded Webinars
Best Practices for DO-254 Requirements Traceability   
DO-254 enforces a strict requirements-driven process for the development of commercial airborne electronic hardware. For DO-254, requirements must drive the design and verification activities, and requirements traceability helps to ensure this. Learn in this webinar traceability best-practices for design assurance level (DAL) A FPGAs. We will provide insights to questions such as: What is the recommended approach when tracing from FPGA requirements to HDL design sources, implementation, test cases and testbench and test results? What type of output files are needed for traceability? What certification authorities look for when they review the traceability data? Play webinar   
Spec-TRACER, DO-254/CTS Recorded Webinars
Better Coverage in VHDL   
Abstract: Experienced users of VHDL simulation with testbenches appreciate additional layer of safety that Coverage Analysis gives them. But are all kinds of coverage equally beneficial? While Code Coverage is certainly useful, it really verifies quality of the testbench, not the design itself. In this webinar we will show how to improve quality of the design using Property Coverage and Functional Coverage (with help of OS-VVM). Play webinar   
Active-HDL, Riviera-PRO Recorded Webinars
Closed Loop Verification of Large Designs   
Abstract: Modern digital designs reached sizes so huge that traditional, simplistic verification no longer works. Large number of design sources, multiple teams and tools using them, almost infinite stream of results they produce - all those factors create new management challenges. Our webinar will show how verification planning, simulation and regression management can be easily handled using Agnisys and Aldec tools.  Play webinar   
Riviera-PRO Recorded Webinars
CyberWorkBench: C-based High Level Synthesis and Verification   
CyberWorkbench is a C-based integrated environment developed by NEC over the period of twenty years. C-based design flow allows designers to achieve higher design efficiency, low area and high performance for ASIC and FPGA chips. This “All-in-C” product includes all the tools needed for efficient C-based design such as a behavioral synthesizer, simulator and formal verifier. Play webinar   
CyberWorkBench Recorded Webinars
Decrypting Encryption in HDL Design and Verification   
Abstract: The issue of securing information flow was very important in the past (mainly in diplomacy and military applications) and became even more important recently, with new applications such as banking (ATM transactions), on-line commerce (e-store transactions), media (pay-per-view contents) and hardware design (secure IP delivery). All those applications face one common problem nicely described in the old joke: the only truly secure information is the one that cannot be read by anybody. Both hardware designers and tool designers must find the balance between security and usability, which can be achieved only by implementing well tested algorithms and workflow. Using Aldec implementation of Secure IP Delivery as the vehicle, this presentation provides informative overview of recommended ciphers and methodologies that can be used by a wide, technical audience.  Play webinar   
Active-HDL, Riviera-PRO Recorded Webinars
DO-254 - How to Increase Verification Coverage by Test (Aldec and Altera)   
As described in DO-254, any inability to verify specific requirements by test on the device itself must be justified, and alternative means must be provided. Certification authorities favor verification by test for formal verification credits because of the simple fact that hardware flies not simulation models. Requirements describing FPGA I/Os must be verified by test. The problem is that testing the FPGA device at the board level provides very low FPGA I/O controllability and visibility, therefore, giving you the inability to verify specific requirements by test. In this webinar, Aldec will demonstrate how you can verify all FPGA level requirements by test. All of the requirements verified during simulation can be repeated and verified in the target device. We will demonstrate a unique solution that enables requirements-based test by reusing the testbench as test vectors for testing the device at-speed. In this webinar, Altera will also share insights into the market trends observed from different applications and discuss some of the solution strategies that will address the system reliability concerns. Play webinar   
DO-254/CTS Recorded Webinars
DO-254 FPGA Level In-Target Testing   
Functional verification of digital designs in real hardware has been a serious undertaking when developing under DO-254 standard. Section 6.2 Verification Process of RTCA/DO-254 specifies that requirements must be preserved and verified from RTL simulation stage to hardware verification stage. Learn in this webinar examples of common challenges that are usually encountered during hardware verification, and more importantly, the solution to overcome these challenges. This webinar will highlight a unique methodology to replay RTL simulation in the target device at-speed that can significantly reduce the verification cycle. Play webinar   
DO-254/CTS Recorded Webinars
DO-254 Requirements Traceability   
Complex custom micro-coded devices such as PLDs, FPGAs and ASICs used in commercial airborne hardware are subject to the development process outlined in the DO-254 guidance. This means that the design and verification for these types of devices must follow the strict requirements-based process described in DO-254. The primary purpose of DO-254 is to provide assurance that the device under test meets its intended functions under all foreseeable operating conditions. Requirements express the functions of the device under test, and therefore it is crucial that requirements drive the design and verification activities. Requirements traceability helps to ensure that design and verification activities are requirements-based. In this webinar, we will describe requirements traceability according to DO-254 guidance in the context of FPGAs, and we will provide explanations as to what it means for the applicants to meet the objectives for traceability. We will also describe the underlying purpose of traceability and the resulting benefits that can be achieved when done correctly. Play webinar   
Spec-TRACER, DO-254/CTS Recorded Webinars
DO-254 Verification Strategies   
As a best-practice standard, efficient ASIC and FPGA project planners will allocate 1/3 of the project cycle to design and 2/3 of the project cycle to verification. The best of these planners will bias toward even more verification-hours and innovative verification strategies whenever possible, because the great reality of schedule-time allocated to verification is that THERE’S NEVER ENOUGH TIME. When an FPGA or ASIC is destined for an avionics product, effective design of that DO-254-qualified device is even more dependent-upon good verification strategies and practices. Good verification strategies will use those precious hours more effectively – and will also consistently prove to be more useful when combined with a comprehensive exploitation of well-written requirements and compliance with a well-constructed verification process, planned in advance of the work. In this webinar, we will discuss various verification strategies and how they can be applied to successful verification of a design in a DO-254 Levels A/B flow. Play webinar   
DO-254/CTS Recorded Webinars
DO-254: How to Formulate an Efficient PHAC   
With several influences on PHAC content and project specific content, this webinar will address how to write a PHAC to address DO-254 and certification authority required content. Specific examples of how to word certification basis, means of compliance, and certification liaison will be included. The webinar will demonstrate how to address tool qualification and the PLD life cycle data. Suggestions will be included for setting up the compliance data to simplify future reuse or addressing in-service changes. Play webinar   
DO-254/CTS Recorded Webinars
DO-254: Requirements Optimization for Verification   
Requirements are central to DO-254 design and verification objectives. Well-formed and well-written requirements can help streamline the design and especially the verification aspects of a project. The discussion focuses on requirements and the attributes that make requirements support the design and verification processes. Play webinar   
DO-254/CTS Recorded Webinars
Ask Us a Question

Ask Us a Question

Captcha ImageReload Captcha
Incorrect data entered.
Thank you! Your question has been submitted. Please allow 1-3 business days for someone to respond to your question.
Internal error occurred. Your question was not submitted. Please contact us using Feedback form.