High-Level Synthesis and Verification

CyberWorkBench® enables higher design efficiency, low power and high performance of the chip by allowing designers to implement hardware at the algorithmic level. This “All-in-C” high-level synthesis and verification tool set for ASIC and FPGAs (Xilinx/Altera) reduces the development time and cost significantly.

Designers can describe hardware at higher abstraction level using SystemC and ANSI-C and using CyberWorkBench they can generate highly optimized RTL for their ASIC and FPGAs (Xilinx/Altera) chip. Automatic pipelining, power optimization and powerful parallelism extraction allows designers to generate smaller and low power designs compared to manual RTL design approach.

Top Benefits

- Support for both control dominated circuits and datapath module
- Dedicated technology support for Altera® & Xilinx® FPGAs
- Best-in-class High-Level Synthesizer that features automatic pipelining, power optimization, powerful parallelism extraction
- Powerful graphical analysis capabilities for synthesized circuits
- C-based Formal Verification using assertions and properties
- Automatic top level structural description generator to connect C-based modules and legacy RTL modules
- Powerful SystemC source code debugger
- Legacy/IP RTL code to SystemC converter for easier migration to C-based design flow

“All-in-C” Synthesis

Behavioral synthesizer in CyberWorkBench can synthesize any type of application including control dominated circuits and datapath. This best-in-class high-level synthesizer features automatic pipelining, power optimization and powerful parallelism extraction to reduce chip area and power through maximum resource sharing. Designers with IP/RTL legacy modules can use top level structural description generator and can easily connect to C-based modules. To improve the design productivity CyberWorkBench also includes numerous behavioral IPs that can be retargeted to different implementation technologies or system requirements.

“All-in-C” Verification

CyberWorkBench provides powerful static and dynamic verification tools to make debugging of larger designs much easier. Formal verification of the high level source code using C level property checker enables designers to describe assertions and properties directly in C source code. Built-in automated testbench generator cuts verification time by allowing re-usage of untimed C stimulus in SystemC and RTL simulation.
CyberWorkBench®

<table>
<thead>
<tr>
<th></th>
<th>Enterprise</th>
<th>Professional</th>
<th>Standard</th>
<th>Basic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version</td>
<td>Ver5.2</td>
<td>Ver5.2</td>
<td>Ver5.2</td>
<td>Ver5.2</td>
</tr>
<tr>
<td>Target Device</td>
<td>ASIC / FPGA</td>
<td>FPGA</td>
<td>FPGA</td>
<td>FPGA</td>
</tr>
<tr>
<td>Common Functionality</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Option</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Description Size</td>
<td>No Limit</td>
<td>No Limit</td>
<td>Limited</td>
<td>Limited</td>
</tr>
</tbody>
</table>

How To Run

- **UI**
- **Command Line**

Target Device

- **ASIC**
 - ALTERA Stratix
 - XILINX Virtex
 - ALTERA Arria
 - XILINX Kintex
 - ALTERA Cyclone
 - XILINX Artix (Spartan)

- **FPGA**

License Type

- **User Lock Licence**
- **Node Lock Licence**
- **Floating Licence**

License Term

- **1 year**
- **2 years**
- **3 years**
- **Perpetual**

*1: Available for one of the FPGA Series marked ()

Advantages

Design Cost Reduction:
- Description reduction: 5-30%, simulation speed 100X
- Design man-month reduction (e.g. 80MM 10MM)
- Design period for HW (blue) and SW (red) are both reduced
- Higher reliability: fast HW-SW co-verification (cycle accurate)

Chip Cost Reduction: Smaller Area/Power

- HLS can generate smaller and lower power designs compared to manual RTL designs through maximum resource sharing
- Area and performance optimization for Altera, Xilinx FPGA

Applications

- Digital Circuits: mobile phone, base station, computer, transmission equipment, STB, digital camera, printer, controllers
- Acceleration of server: Big data (e.g. High Frequency Trading)
- Replacement of real time processing MPU: sensor monitoring and motor control
- Controller: Factory Automation, Medical, Automobile