
UVM Transaction Debugging

www.aldec.com

Agenda
• TLM Introduction

• Transaction visualization in Riviera-PRO

• Transaction recording in UVM

• Graphical Debugging for TLM and UVM in Riviera-PRO

• UVM-TLM simulation example demo

www.aldec.com

Introduction
• As size of typical digital design grows, you

have to raise abstraction level while creating it.

• Higher abstraction levels can be achieved
in different areas:

 When handling individual bits is no longer feasible,
you can use arrays, records/structures or even
associative arrays.

 When simple functions/tasks/procedures are not enough to manage your
code, you can switch to Object Oriented Programming (OOP).

 When data transferred in your design gets too diverse and too complicated,
you should consider raising data transfer abstraction to Transaction Level…

www.aldec.com

Transactions Overview
• Transaction is an abstraction of information transfer.

• If you have a problem with the term transaction, try
to replace it with message.

• In languages supporting OOP transaction is typically
executed by calling method of some design object.
In other languages it can be a procedure/function call.

• In UVM a transaction is a class object (uvm_transaction), that includes
whatever information is needed to model the communication between
two components.

• The amount and detail of the information encapsulated in a transaction
is an indication of the abstraction level of the model.

www.aldec.com

Basic TLM Communication
• The most basic transaction-level operation allows one component to put

a transaction to another

• The producer generates transactions and sends them out through its port
(green square).

• The actual implementation of the transaction is supplied by the
consumer.

• The transaction implementation (in consumer) connects with requester
via export (red circle).

www.aldec.com

Put vs. Get
• If directions of data and control flow agree, producer puts transaction

into consumer:

• If directions of data and control flow disagree, consumer gets transaction
from the producer:

• No matter if it is put or get situation, the process with export
(the executor) is responsible for implementation of the transaction;
requester is using its port to call services of the executor.

www.aldec.com

FIFOs
• Simple transaction models (direct consumer to producer connection)

work OK only when data traffic is slow.

• It may be necessary for components to operate independently, where
the producer is creating transactions in one process while the consumer
needs to operate on those transactions in another.

• TLM FIFO is used to synchronize data flow between producer and
consumer.

• So, the producer puts the transaction into the TLM FIFO fifo, while the
consumer independently gets the transaction from the FIFO.

www.aldec.com

Analysis Ports
• TLM provides additional, specialized

transaction port: analysis port.
(Look for blue diamond in the diagram.)

• tlm_analysis_port has just one interface method write (void function)
and can be connected to analysis exports of multiple data-collecting
components (scoreboards, coverage collectors, etc.)

www.aldec.com

Transaction Recording in Riviera-PRO
• The transaction defined in the source code can be recorded in the

simulation database in Riviera-PRO.

• The transaction happens on a transaction stream.

• Transactions have both their beginning and end times and can
overlap one another.

www.aldec.com

Transaction Attributes
• The transaction attribute is a user-defined property assigned to a

transaction.

• An attribute has a name and a value.

• Attributes can be assigned any arbitrary meaning.

www.aldec.com

Linking Signals to a Transaction
• Signals could be linked to a transaction stream.

• Easy association between the transactions and the signals.

• Linked signals are automatically traced in asdb.

www.aldec.com

Linking Transactions
• Two transactions can be related as source transaction and target

transaction.

• Helps with better understanding of the data flow in the design.

• The relation interpretation is abstract and up to the user.

www.aldec.com

Using Transaction Recording
• Simple case using Riviera-PRO’s transaction recording functions.

www.aldec.com

Transaction Recording in UVM
• Let’s take a look at UVM’s sample design: ‘Hello World’.

• The design contains two producers,
consumer and FIFO:

• 1st producer talks to consumer directly.

• 2nd producer talks to consumer via tlm_fifo.

• Producers generate randomized packets and
sends them via ports.

• Consumer receives packets and generates
transactions .

www.aldec.com

‘Hello World’- Top level connections
class top extends uvm_component;

producer #(packet) p1;
producer #(packet) p2;
uvm_tlm_fifo #(packet) f;
consumer #(packet) c;

`uvm_component_utils(top)

function new (string name, uvm_component parent=null);
super.new(name,parent);

p1 = new("producer1",this);
p2 = new("producer2",this);
f = new("fifo",this);
c = new("consumer",this);

p1.out.connect(c.in);
p2.out.connect(f.blocking_put_export);
c.out.connect(f.get_export);

endfunction

endclass

www.aldec.com

uvm_blocking_put_imp #(T,consumer #(T)) in;

...
task put (T p);

lock.get();
count++;
accept_tr(p);
#10;
void'(begin_tr(p));
#30;
end_tr(p);

endtask

uvm_blocking_put_port #(T) out;

...

task run();
T p;
for (count =0; count < num_packets; count++)
begin

...

void'(p.randomize());

out.put(p);

#10;

end

endtask

Direct Port/Export Connection
• Producer 1 connects to Consumer directly: port to export.

• Producer 1 makes call to put() function.

• Consumer provides implementation for put() function.

www.aldec.com

Connection via TLM-FIFO
• Producer 2 connects to Consumer vial TLM FIFO.

• Producer and consumer operate independently.

uvm_get_port #(T) out;

...
task run ();

T p;
while(out.size()) begin
out.get(p);
put(p);

end
endtask

...

uvm_blocking_put_port #(T) out;

...

task run();
T p;
for (count =0; count < num_packets; count++)
begin

...

void'(p.randomize());

out.put(p);

#10;

end

endtask

www.aldec.com

‘Hello World’ - Consumer
• Let’s have a closer look at the transaction implementation in UVM

starting with the Consumer.

class consumer #(type T=packet)
extends uvm_component;

...

task put (T p);
lock.get();
count++;
accept_tr(p);
#10;
void'(begin_tr(p));
#30;
end_tr(p);
...

endtask
endclass

Call stack

consumer :: begin_tr(p)

uvm_component :: begin_tr (uvm_transaction tr)

uvm_transaction :: begin_tr

uvm_recorder_aldec :: begin_tr

(overrides default uvm_recorder)

www.aldec.com

uvm_recorder_aldec Class
• Default uvm_recorder class provides methods (functions) with

basic recording functionality for the transactions
 simple output to a text file.

• uvm_recorder_aldec extends uvm_recorder with
 Transaction recording to Aldec’s simulation database.

 This enables visualization of transactions on the waveform.

• Using uvm_recorder_aldec
 If no recorder object is instantiated in Consumer uvm_default_recorder

will be used

 To override instantiate global_recorder_aldec in Consumer:

task run_phase(uvm_phase phase);

...
this.recorder = global_recorder_aldec;
...

www.aldec.com

Attributes Recording
• A user does not have to worry about specifying each property of

the transaction object he/she wants to be recorded.

• The following UVM techniques take care of it:
1. Register object properties with `uvm_field_int macro.

class packet extends uvm_transaction;

rand int addr;

endclass

class consumer #(type T=packet) extends uvm_component;

…

`uvm_component_utils_begin(consumer #(T))

`uvm_field_int(count,UVM_ALL_ON + UVM_READONLY + UVM_DEC)

`uvm_component_utils_end ...

www.aldec.com

Attributes Recording – cont.
2. Consumer calls end_tr()

uvm_transaction::end_tr()

uvm_object ::record -

__m_uvm_field_automation () – automatically extracts all the fields

uvm_recorder_aldec :: record_field

uvm_recorder_aldec :: set_attribute

$addAttribute(…); - Aldec’s PLI function to record the

transaction attribute in the simulation database (asdb)

www.aldec.com

‘Hello World’ Example – output

{INFO}/producer.sv(46) @ 0 ns: top.producer2 [producer] Starting.

{INFO}/producer.sv(62) @ 0 ns: top.producer2 [producer] Sending producer2-0

{INFO}/producer.sv(46) @ 0 ns: top.producer1 [producer] Starting.

{INFO}/producer.sv(62) @ 0 ns: top.producer1 [producer] Sending producer1-0

{INFO}/producer.sv(62) @ 10 ns: top.producer2 [producer] Sending producer2-1

{INFO}/producer.sv(62) @ 20 ns: top.producer2 [producer] Sending producer2-2

{INFO}/consumer.sv(57) @ 40 ns: top.consumer [consumer] Received producer1-0 local_count=1

{INFO}/producer.sv(62) @ 50 ns: top.producer1 [producer] Sending producer1-1

{INFO}/consumer.sv(57) @ 80 ns: top.consumer [consumer] Received producer2-0 local_count=2

{INFO}/producer.sv(62) @ 90 ns: top.producer2 [producer] Sending producer2-3

...

www.aldec.com

Graphical Debugging in Riviera-PRO
1. Call Stack window

2. Watch window

www.aldec.com

Graphical Debugging – cont.
3. Transaction Data Viewer

4. Waveform

www.aldec.com

Graphical Debugging –cont.
5. Breakpoints and single stepping

6. Class Viewer is coming soon…

www.aldec.com

Summary
• Start using UVM in your Testbench

• UVM provides mechanism for doing many things automatically,
recording transactions is one of them

• Aldec enhances UVM recording function with graphical
visualization of transactions

www.aldec.com

Aldec
Founded

1984 (Privately Held)

Corporate Headquarters

2260 Corporate Circle

Henderson, NV USA

Office Locations

Katowice, Poland

Kharkov, Ukraine

Paris, France

Tokyo, Japan

Shanghai, China

Taipei, Taiwan

Bangalore, India

Raanana, Israel

Worldwide Distribution

Website: http://www.aldec.com
Tel. USA: +1-702-990-4400
E-mail: sales@aldec.com
Tel. Europe: +33-6-80-32-60-56
E-mail Europe: sales-eu@aldec.com
Webinars : http://www.aldec.com/events

http://www.aldec.com/
mailto:sales@aldec.com
mailto:sales-eu@aldec.com
mailto:sales-eu@aldec.com
mailto:sales-eu@aldec.com
http://www.aldec.com/events

