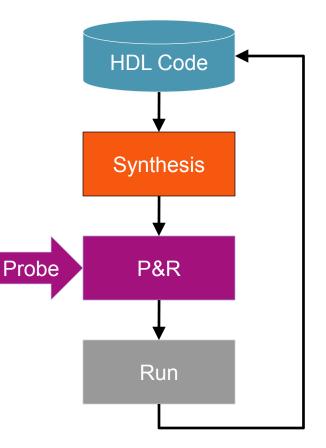


11010010101001-07

101010010010100 071


OVM/UVM for FPGAs: The End of Burn and Churn

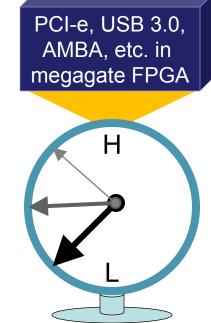
100101010100100110

FPGA Verification by In-Circuit Test

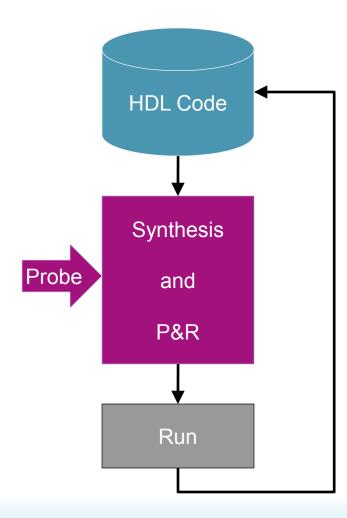
"Burn and churn" based on at-speed test with real input

- Shortest path to the lab
 - Nominal simulation of RTL blocks
 - Relatively short synthesis/ P&R cycle with at-speed run
- Real-world verification
 - Stimulus from bench testers or actual in-circuit input
- Probes provide observability
 - Critical nodes retain during programming
 - Debug and respin

2

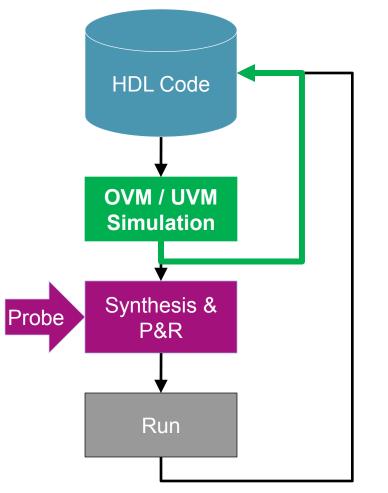

Design Requirements Pressure Methodology

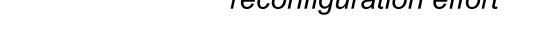
Bigger designs and more standard protocol use


- Mega-gate FPGAs depend on IP
 - Block-level verification by the vendor
 - Deep hierarchy reduces engineer's ability to know the whole design
- State-space grows exponentially
 - Increasingly difficult to create corner cases in the lab with only directed testing
- Must verify protocol interaction
 - Assuming each protocol is verified, how do they interact in the system?

Weighing Down Observability and Controllability

Predictability of Burn and Churn is Gone


- "Burn" is now the long-pole
 - Synthesis and P&R merging due to FPGA complexity
 - "Burn" time is approaching system simulation speed
- "Run" is fast but unobservable
 - Changing probes forces new programming
 - Design too large to "know"
 - Difficult corner case testing
 - Debug becoming incremental where is the end?


OVM/UVM Increases FPGA Verification Quality

Observability and controllability augment in-circuit

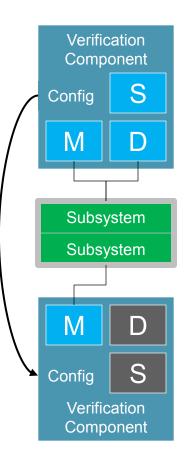
- Fully observable simulation
 - Assertions heighten observability with temporal monitoring key to complex protocols
 - Coverage measures verification progress against plan
- OVM / UVM augments in-circuit
 - Scalability via verification components from block to system
 - Controllability via virtual sequences
 - Reuse via factory localization

Subsystem

Verification

Component

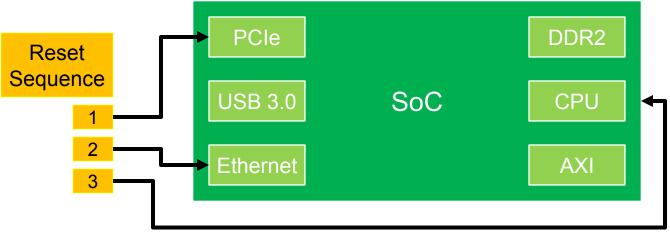
D


S

Μ

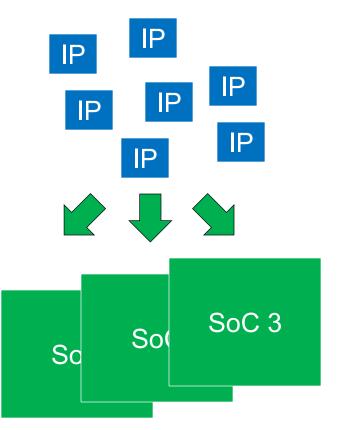
Config

FPGA SoC is All About Rapid Assembly OVM/UVM verification components scale with SoC


- Verification component
 - Driver, monitor, sequencer separated for modular implementation
 - Configuration lives within the component
 - Consistent TLM channel for component connection
- Rapid verification environment assembly
 - Components configure hierarchically
 - Lower-level components switch to passive
- Reduces burn-and-churn test reconfiguration effort

6

Virtual Sequences Reach Corner Cases


- Reset sequences unique to an SoC configuration
 - Virtual sequences enable rapid debug of reset
- Creating and randomizing difficult real world conditions
 - Coordinated events on multiple interfaces
 - Asynchronous activity on multiple interfaces (pushing to the limit)
- Reduces lab time set up; going beyond limited directed tests; exhaustive testing

Reuse, Reuse, Reuse

- FPGA engineers pull IP from many suppliers
 - OVM/UVM assures consistent verification IP for rapid integration
 - Today's top-level IP may be deeply embedded tomorrow as FPGAs grow
- FPGA architecture lends itself to rapid derivative creation
 - OVM/UVM factory enables localization without changing code
- OVM/UVM improves productivity in derivative creation and supplier interaction

8

FPGA Engineers: Escape Burn-and-Churn! Learn and apply OVM/UVM

- Burn-and-churn is on the run
 - Driven by lack of observability and controllability in in-circuit FPGA testing
 - At-speed (in-circuit) tests will still be part of FPGA verification
- OVM/UVM simulation available for all FPGA engineers
 - Not just for high-end FPGA/ASIC anymore
- Multiple resources for OVM/UVM
 - OVMWorld.org and UVMWorld.org
 - Multiple training resources available
- Aldec's Riviera-PRO simulator supports
 - OVM 2.1.1
 - UVM-EA release

www.aldec.com

9