

June 2012

Special focus:
EDA & Coding Tools

Special focus:
Sensors & Data Conversion

european
business press

Flexible organic transistors
find use in medical implants

www.electronics-eetimes.com

FREE
SHIPPING

ON ORDERS
OVER €65!

DIGIKEY.COM/ EUROPE

020212_FRSH_EET_EU_Snipe.indd 1 2/2/12 12:37 PM

32 Electronic Engineering Times Europe June 2012	 www.electronics-eetimes.com

DESIGN & PRODUCTS EDA & Design Tools

many customer re-spins. A coherent
mechanism for managing configura-
tions is required, allowing designers
to revert to a previous configuration
at any point in the project lifecycle.

Providing a local workspace as-
sembly client to easily create and
maintain configured workspaces
based on a defined set of IP versions
eases the task of configuration man-
agement. In such a system designers
are typically given a default BOM to
assemble their SoC workspaces.

The default BOMs are controlled centrally by the project lead
and the delegated subsystem owners. For example, PDK en-
tries can be set in the project BOM as a hierarchy include, and
the CAD person responsible for that PDK provides the correct
BOM definition. Users no longer have to make decisions about
which versions of which IPs and their libraries to use - these are
configured centrally and the risk of them choosing the wrong
version is diminished. Stale (out of date) IP versions can be
retired in the BOM management interface and users precluded
from assembling their workspaces with these ‘old’ versions. The
correct versions are suggested as part of the assembly process,
and BOM owners are forced to update to the correct versions if
they intend to make a subsystem release.

IP developers can go “off grid” from the set of IP versions
defined in their subsystem BOM when required, but the as-
sembly environment makes it clear they are out of sync with

the project BOM. Developers can however
derive BOMs from the state of the work-
spaces and send them back to the central-
ized cockpit for use by other designers on
the project.

Tracking IP usage and quality
The proliferation of IP use introduces is-
sues related to the volume and frequency
of use of any particular IP, as well as its
quality in relation to the overall design
spec. A system that supports the man-
agement of the IP release and promotion

methodology at the client level is needed. Each IP release and
its project and subsystem context should be tracked in an SQL
database and, over time, the entire IP fabric of the company
can be mapped, including all internally generated IP and exter-
nal IP purchased.

With each release quality measurements, regression results,
test coverage, power analysis calculations and other important
metrics are collected. This is stored in the SQL database and
users can access reporting results via web. Users can measure
the quality and progress of the design for each release configu-
ration and this is kept up to date automatically. This lends itself
well to IP audits, hierarchical quality checks, cost analysis and
other import measurements. With such a system users have
access to a real time stream of project IP metrics in an easily
configured central portal.

Fig. 5: SoC Developer workspace assembly.

FPGA-based SoC verification challenges
By Ian Gibbins
as fpga designs become increasingly
complex, a clear synergy emerges with that
of the ASIC (design) world and, more spe-
cifically, creating a System-on Chip (SoC).

For example, consider Xilinx’s recently
announced Zynq-7000 Extensible Process-
ing Platform (EPP). It features an ARM
dual-core Cortex-A9 MPCore which has
numerous peripherals including memory
controllers, CAN, USB, Tri-mode Gigabit
Ethernet, SD-SDIO, UARTs and ADCs. Xilinx
boasts though that the real advantage (over
say a two-chip processor and FPGA solu-
tion) is the nine-AXI interfaces and control
signals (e.g. DMA and interrupts) between
the ARM core and the programmable
logic fabric (itself a considerable amount of
‘FPGA white space’). Also, there is the ever-present requirement
of making increased and better reuse of in-house developed IP. It
is not surprising therefore that many FPGA designers are find-
ing themselves no longer working at the chip level - because the
chip has now become a system – and this has required making
a significant (but not too daunting) adjustment to the design flow.
For example, verification now means dealing with different levels of
design abstraction; multiple languages used for design description;

and assorted verification methodologies. Of
these, embracing the verification methodolo-
gies are perhaps the most important – yet
seem to be overlooked by many FPGA de-
signers (see ‘Survey Results’). Some method-
ologies have their roots in the world of ASIC
SoC design, others are more associated with
software and embedded system design. As
such, they will be mature and have already
proven their worth in reducing the amount
of time required for design verification – and
are therefore well suited to complex FPGA
designs.

Levels & languages
While a traditional RTL Design Flow

could survive with just one language (VHDL
or Verilog), a System Level Design Flow requires languages that
can handle significantly higher levels of abstraction. Two popular
languages we should mention here are:

•	 SystemC, which is governed by IEEE Std 1666-2005 and
is a library of C++ classes and templates intended for system and
hardware descriptions at medium to high levels of abstraction.
The C++ origins of SystemC make it very popular among system
designers, and using SystemC makes the transition from Algorithm
to Architecture very easy.

However, a drawback of SystemC is its lack of native support
for Assertion Based Verification (ABV – see later).

Ian Gibbins is an Applications Engineer with Aldec Europe
www.aldec.com

www.electronics-eetimes.com 	 Electronic Engineering Times Europe June 2012 33

•	 SystemVerilog is governed by the standard IEEE Std 1800-2009 and is the
evolution of earlier Verilog HDL. The main strengths of SystemVerilog are: enhanced RTL
coding; its extensive support for ABV; being able to implement Object Oriented Program-
ming (OOP); and the availability of a Direct Programming Interface (DPI) to C/C++.

Functional verification
Over the years the EDA industry has spawned a diverse range of verification tech-

niques such as Design Rule Checking (DRC), Static Timing Analysis (STA), Formal Verifi-
cation and Simulation. Verification can, and should, be implemented as soon as possible
after design capture. DRC, for example, provides an effective and early ‘sanity check’. It
analyses the design sources, checking if they follow the rules of good design practice;
and DRC tools are usually equipped with multiple sets of rules which can be fine-tuned.
As a result, you don’t have to waste time finding obvious mistakes and can direct your
attention to more exacting problems.

STA is a common replacement for timing simulation. Essentially you specify critical
paths and timing requirements, and the verification tool lists the paths that meet the re-
quirements and flags those that fail. However, the results from STA only make sense if the
correct functionality was verified earlier and that the constraints specified were realistic.

Formal Verification is considered the most scientific of the ‘static’ verification methods
(which include DRC and STA). It uses formal methods to transform the design down to
a state machine, a network of processes or similar fundamental form. It then performs
checks depending on the class of tool. For example, a Model Checker verifies whether
design properties still hold in the transformed design. An Equivalence Checker on the
other hand verifies whether the transformed design has the same functionality as the
reference design; noting here that your reference design must itself be validated using
one of the other verification techniques.

Simulation on the other hand is a dynamic form of verification. It relies on feeding
stimulus to the design model (created inside a simulator) and observing the outputs
produced. The most popular variety of simulation is event-driven, used for VHDL and
Verilog design descriptions. The precise modelling of every single signal change is the
source of high accuracy during event-driven simulation but, unfortunately, it slows down
the verification of large designs.

One way of addressing this is to implement cycle-based simulation and reporting
signal changes not when they happen but rather when the nearest sampling event (e.g.
a clock edge) arrives. Simulation can be enhanced by collecting additional data during
verification, an approach which has led to some of the newer complementary verification
methodologies detailed below.

Methodologies
There are many verification methodologies used in digital design, with two popular be-

ing: Assertion Based Verification (ABV) and Open Verification Methodology (OVM).
ABV uses formalised versions of design properties (expressed in dedicated languages

instead of plain English) to create an additional layer of verification. Whilst regular HDL
code has to be written with hardware implementation in mind, for ABV assertions con-
stantly express the original design intent (i.e. the desired design functionality). OVM on
the other hand is more of a generic term, meaning a library of pre-packaged advanced
verification blocks (i.e. procedures for stimulus generation, data collection and control of
verification). OVM packages typically include Constrained Random Stimulus Generation
(CRSG) and Functional Coverage (FC), which are difficult to master and implement if you
are a hardware designer and unfamiliar with the more arcane aspects of SystemVerilog or
SystemC.

Engineers already using OVM will testify that it improves testbench reuse and makes
verification code more portable. However, the close association with SystemVerilog and
SystemC often has engineers thinking that the CRSG and FC can only be done in those
languages. A recent development on this front has been the launch of the Open Source -
VHDL Verification Methodology - www.osvvm.org - which provides advanced features to
engineers designing ASICs and FPGA-based applications using VHDL.

If you are a seasoned FPGA designer embracing system-level design for the first time,
the above may seem a little daunting. Dealing with the different levels of design abstrac-
tion, the multiple languages that may be used for design description and the assorted
verification methodologies available – all have, in many respects, complicated your engi-
neering processes. Conversely though, all can be handled by established EDA tools and
techniques that have already proven their worth for ASIC design and embedded system
development.

	001_EETE

